: ایدآل های حقیقی در حلقه توابع پیوسته بی نقطه
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر
- author منا عبداللهی
- adviser مهرداد نامداری منیره پیمان علی رضایی علی آباد
- publication year 1393
abstract
ایدآل های حقیقی در حلقه ی توابع پیوسته با مقدار حقیقی روی فضای تیخونوف x توسط صفر مجموعه ها به طور شفاف شناسایی شده اند. در اینجا می خواهیم این مشخصه سازی را به حلقه rl متشکل از توابع حقیقی پیوسته روی یک چارچوب (frame) کاملا منظم l تعمیم دهیم، که برای این کار از عناصر متمم صفر-مجموعه استفاده می کنیم. همچنین به عنوان یک کاربرد نشان خواهیم داد که l یک چارچوب فشرده حقیقی است اگر و تنها اگر هر ایدآل ماکسیمال آزاد در rl یک ایدآل ابر-حقیقی باشد. در ادامه بیان دیگری از قضیهmorwkas را ارائه خواهیم داد که فضاهای فشرده حقیقی را مشخص می کند.
similar resources
آشنایی با حلقه های توابع پیوسته
این مقاله شرحی است از روند تاریخی پیدایش نظریه حلقه های توابع پیوسته و بیان موضوعات اصلی پژوهش در این زمینه از ریاضیات همراه با توصیف فعالیت های پژوهشی انجام شده در کشور طی سالهای گذشته و در حال حاضر.
full textحلقه های توابع پیوسته در دهه ی پنجاه
آن چه که در پی می آید تجدید خاطره ی نویسنده از پیدایش و آغاز رویش حلقه های توابع پیوسته با تاکید بر روی کارهایی است که در دهه ی پنجاه در دانشگاه پوردو انجام شده است. ادعایی بر بی نقص بودن یا تاریخی-تحقیقی بودن آن نیست. مقداری از کار انجام شده در آن زمان مورد بحث قرار گرفته و ارجاعات به کتاب ها و مقالات مروری آن دوره را در بر گرفته است. روی هم رفته نمادهایی که در ادامه مورد استفاده قرار گرفته از...
full textاشتراک ایدآل های اول مینیمال در حلقه توابع پیوسته
اگر x فضای فشرده حقیقی باشد اشتراک همه ایدآل های ماکسیمال آزاد c(x) با ck(x) برابر است و هر فضایی که چنین ویژگی داشته باشد، ?-فشرده نامیده می شود. در سال 1969 ماندلکر زیر مجموعهی گرد در فضای ?x را تعریف کرد و در سال 1973 به همراه جانسون نشان دادند که?x کوچکترین فضای? -فشرده بین x,?x می باشد.همچنین ماندلکر نشان داد که فضای x،یک p-فضا است اگر وتنها اگر هر زیر مجموعه ی ?x گرد باشد. در این رساله ن...
15 صفحه اولحلقه هایی بدون ایدآل های ماکسیمال
در کلاس درس جبر مجرد رسم بر این است که با استفاده از لم زرن ثابت می کنند که حلقۀ یکدار باید ایدآلهای ماکسیمال داشته باشد. این حکم بدون عنصر یکه نمی تواند درست باشد. در اینجا چند مثال نقض از حلقه های جابه جایی ارائه می کنیم. ابتدا حلقه های با ضرب بدیهی یعنی آنهایی که برایشان حاصلضرب دو عنصر صفر باشد، را در نظر می گیریم. در این صورت یک ایدآل دقیقاً یک زیرگروه جمعی است و ما در جستجوی گروههای آبلی ب...
full textآشنایی با حلقه های توابع پیوسته
این مقاله شرحی است از روند تاریخی پیدایش نظریه حلقه های توابع پیوسته و بیان موضوعات اصلی پژوهش در این زمینه از ریاضیات همراه با توصیف فعالیت های پژوهشی انجام شده در کشور طی سالهای گذشته و در حال حاضر.
full textحلقه های توابع پیوسته در دهه ی پنجاه
آن چه که در پی می آید تجدید خاطره ی نویسنده از پیدایش و آغاز رویش حلقه های توابع پیوسته با تاکید بر روی کارهایی است که در دهه ی پنجاه در دانشگاه پوردو انجام شده است. ادعایی بر بی نقص بودن یا تاریخی-تحقیقی بودن آن نیست. مقداری از کار انجام شده در آن زمان مورد بحث قرار گرفته و ارجاعات به کتاب ها و مقالات مروری آن دوره را در بر گرفته است. روی هم رفته نمادهایی که در ادامه مورد استفاده قرار گرفته از...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023